The effect of temperature on reproduction in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi
نویسندگان
چکیده
BACKGROUND AND AIMS Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively. METHODS Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio. KEY RESULTS Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield. CONCLUSIONS High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species.
منابع مشابه
Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals
The involvement of chromatin remodelling in dormancy cycling in the soil seed bank (SSB) is poorly understood. Natural variation between the winter and summer annual Arabidopsis ecotypes Cvi and Bur was exploited to investigate the expression of genes involved in chromatin remodelling via histone 2B (H2B) ubiquitination/de-ubiquitination and histone acetylation/deacetylation, the repressive his...
متن کاملتحلیل روند عوامل اقلیمی در شهرهای بزرگ ایران
Climate change has important effects on earth environment and human life. Therefor, investigation and study of climate change is very essential. This study investigated rainfall, temperature, relative humidity and wind variability by analyzing data for annual and monthly climatic factors collected at 13 synoptic stations (industrial cities of Iran) by using Mann-Kendall test. The results of mon...
متن کاملتحلیل روند عوامل اقلیمی در شهرهای بزرگ ایران
Climate change has important effects on earth environment and human life. Therefor, investigation and study of climate change is very essential. This study investigated rainfall, temperature, relative humidity and wind variability by analyzing data for annual and monthly climatic factors collected at 13 synoptic stations (industrial cities of Iran) by using Mann-Kendall test. The results of mon...
متن کاملHabitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature
Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and interm...
متن کاملTemperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes
Seeds use environmental cues to sense the seasons and their surroundings to initiate the life cycle of the plant. The dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory, and investigated their expression patterns in seeds ...
متن کامل